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GazeGaussian: High-Fidelity Gaze Redirection with 3D Gaussian Splatting

Supplementary Material

A. Overview805

The supplementary material encompasses the subse-806
quent components. Please visit the anonymous website807
https://gazegaussian.github.io/ for additional visual compar-808
isons of novel view and novel gaze synthesis.809

• Supplementary experiments810
– Ablation study on cross-dataset811
– Personal calibration for gaze estimation812
– Comparison between GazeNeRF + expression-guided813

neural renderer and GazeGaussian814
• Additional visualization results815

– Visualization for ablation study816
– Visualization for cross-dataset comparison817
– Visualization for identity morphing818
– Visualization for transformed Gaussians819

• Implementation details820
• Dataset and pre-processing details821
• Ethical consideration and limitations822

B. Supplementary experiments823

B.1. Ablation study on cross-dataset824

To further validate the effectiveness of each proposed com-825
ponent, we conduct an ablation study on the cross-dataset826
evaluation to assess the generalization capability of our full827
pipeline. As shown in Tab. 1, the results are consistent with828
the ablation study in the main text. The proposed Gaussian829
eye rotation representation significantly improves eye redi-830
rection accuracy while ensuring robust redirection across831
cross-domain datasets. Additionally, the expression-guided832
neural renderer enhances the fidelity of the synthesized im-833
ages, preserving the identity characteristics of the input im-834
age. From the ablation study on cross-dataset, we can further835
validate the importance of each component.836

B.2. Personal calibration for gaze estimation837

Following GazeNeRF, we perform personal calibration to838
demonstrate the benefits of our method for downstream gaze839
estimation tasks. Specifically, given a few calibration sam-840
ples from person-specific test sets, we augment these real841
samples with gaze-redirected samples generated by Gaze-842
Gaussian. We then fine-tune a gaze estimator pre-trained on843
ETH-XGaze using these augmented samples and compare844
its performance with a baseline model fine-tuned only on845
real samples. To ensure a fair comparison, the total num-846
ber of augmented samples is fixed at 200 (real + generated847
samples), and we vary the number of real samples used for848
fine-tuning during the evaluation.849
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Figure 1. Error comparison based on number of real samples.

As shown in Fig. 1, the x-axis represents the number of 850
real samples used, and the y-axis shows the gaze estimation 851
error in degrees on the ETH-XGaze person-specific test set. 852
We evaluate up to nine real samples in the few-shot setting. 853
Fine-tuning the pre-trained gaze estimator with real and gen- 854
erated samples from GazeGaussian achieves the lowest gaze 855
estimation error across all settings. Compared to GazeNeRF, 856
GazeGaussian demonstrates a clear advantage, especially 857
when fewer real samples are available, indicating that the 858
generated samples from GazeGaussian are of higher fidelity 859
and more effective for improving downstream gaze estima- 860
tion accuracy. In contrast, samples generated by GazeNeRF 861
lead to higher errors, while STED performs the worst, show- 862
ing a notable limitation in leveraging 2D generative models 863
for this task. This is due to the lack of consideration for the 864
3D nature of gaze redirection in STED, which is critical for 865
high-quality sample generation and effective downstream 866
adaptation. 867

B.3. Comparison between GazeNeRF + expression- 868
guided neural renderer and GazeGaussian 869

We compare the performance of GazeNeRF, GazeNeRF en- 870
hanced with the expression-guided neural renderer (EGNR), 871
and our proposed GazeGaussian on the ETH-XGaze dataset. 872
As shown in Tab. 2, integrating EGNR into GazeNeRF leads 873
to noticeable improvements in gaze redirection accuracy 874
and image quality. This demonstrates the versatility of the 875
proposed expression-guided neural renderer in enhancing 876
facial synthesis and better capturing identity-specific expres- 877
sions. However, even with the added EGNR, GazeNeRF’s 878
performance remains limited compared to GazeGaussian. 879

1

https://gazegaussian.github.io/


CVPR
#3250

CVPR
#3250

CVPR 2025 Submission #3250. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 1. Component-wise ablation study of GazeGaussian on the ColumbiaGaze, MPIIFaceGaze and GazeCapture datasets.

Two-
stream

Gaus.
Eye Rep.

Exp.
Guided

ColumbiaGaze MPIIFaceGaze GazeCapture
Gaze↓ Head↓ LPIPS↓ ID↑ Gaze↓ Head↓ LPIPS↓ ID↑ Gaze↓ Head↓ LPIPS↓ ID↑

✓ 8.996 4.494 0.325 49.286 19.787 8.491 0.321 34.483 15.697 13.740 0.260 33.393
✓ ✓ 9.143 4.509 0.324 49.805 16.689 8.578 0.303 34.194 15.926 14.869 0.261 33.004
✓ ✓ 7.799 3.754 0.284 57.252 11.938 6.860 0.257 35.614 10.339 8.208 0.216 40.458

✓ ✓ 7.710 3.899 0.280 58.969 12.559 6.188 0.246 37.444 11.296 8.460 0.224 42.294
✓ ✓ ✓ 7.415 3.332 0.273 59.788 10.943 5.685 0.224 41.505 9.752 7.061 0.209 44.007

Table 2. Comparison between GazeNeRF + expression-guided neural renderer and GazeGaussian on ETH-xgaze

Method Gaze↓ Head
Pose↓ SSIM↑ PSNR↑ LPIPS↓ FID↓ Identity

Similarity↑ FPS↑

GazeNeRF 6.944 3.470 0.733 15.453 0.291 81.816 45.207 46
GazeNeRF + EGNR 6.854 3.025 0.764 16.147 0.258 67.219 50.268 44

GazeGaussian (Ours) 6.622 2.128 0.823 18.734 0.216 41.972 67.749 74

The fundamental constraint lies in GazeNeRF’s representa-880
tion, which lacks the explicit modeling of gaze and facial881
expression dynamics offered by GazeGaussian’s two-stream882
Gaussian structure. GazeNeRF struggles to achieve fine-883
grained expression synthesis and accurate gaze alignment,884
which are critical for high-fidelity gaze redirection.885

In contrast, GazeGaussian leverages the strengths of886
the expression-guided neural renderer with its specialized887
Gaussian-based eye rotation representation and two-stream888
structure, enabling superior expression modeling and gaze889
control. This allows GazeGaussian to achieve higher fidelity,890
identity preservation, and rendering accuracy compared to891
GazeNeRF, even when enhanced with the expression-guided892
neural renderer. These results highlight the importance of893
combining advanced neural rendering techniques with a ro-894
bust facial and eye modeling framework for state-of-the-art895
performance.896

C. Supplementary visualization897

C.1. Visualization for ablation study898

Fig. 2 presents additional qualitative results from our ab-899
lation study conducted on the ETH-XGaze dataset. These900
visualizations highlight the importance of each proposed901
component in GazeGaussian.902

Without the Gaussian eye rotation representation, the903
model struggles to achieve accurate eye control, resulting in904
noticeable deviations in gaze direction and reduced realism905
in the eye region. This demonstrates the critical role of the906
Gaussian eye rotation representation in enabling precise and907
realistic gaze redirection. Additionally, the absence of the908
expression-guided neural renderer leads to a significant loss909
in facial detail and expression fidelity. With the renderer in-910
cluded, the synthesized images exhibit finer facial details and911
improved consistency with the target identity, showcasing912
the renderer’s effectiveness in enhancing the overall quality913
of face synthesis. These results confirm that both compo-914

nents contribute significantly to the superior performance 915
and visual fidelity of GazeGaussian. 916

C.2. Visualization for cross-dataset comparison 917

We provide additional cross-dataset comparison visualiza- 918
tions for MPIIFaceGaze (Fig. 4), ColumbiaGaze (Fig. 5) and 919
GazeCapture (Fig. 6). Compared to the baseline, GazeGaus- 920
sian achieves high-fidelity gaze redirection with superior 921
image synthesis quality. 922

C.3. Visualization for identity morphing 923

Fig. 7 showcases identity morphing results on the ETH- 924
XGaze dataset. For this experiment, we randomly select 925
two subjects with identical gaze directions and head poses. 926
By interpolating their latent codes, we generate a smooth 927
transition between the two identities while keeping the gaze 928
direction and head pose consistent. 929

This visualization demonstrates the capability of Gaze- 930
Gaussian to preserve gaze alignment and head orientation 931
during synthesis, even as the facial features gradually change 932
according to the interpolated latent codes. The results high- 933
light the robustness of GazeGaussian in maintaining high- 934
fidelity gaze redirection while adapting facial characteristics 935
as required. This ability to control identity-specific details 936
while preserving gaze and pose consistency underscores the 937
flexibility and effectiveness of the proposed method. 938

C.4. Visualization for transformed Gaussians 939

To demonstrate the advantages of GazeGaussian’s explicit 940
incorporation of head pose and gaze direction for rotating 941
Gaussians in the head and eye regions, we visualize the Gaus- 942
sians after deformation from the canonical space. As shown 943
in Fig. 3, the explicit support for rotation and translation 944
in GazeGaussian allows the deformed Gaussians to form a 945
reasonable spatial distribution and accurate color representa- 946
tion. This capability enables precise geometric control and 947

2



CVPR
#3250

CVPR
#3250

CVPR 2025 Submission #3250. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Oursw/o Two-stream
Gaussians 

Vanilla 
GazeGaussian

w/o Gaussian
Eye Rep.

w/o Expression-
Guided

Ground Truth Oursw/o Two-stream
Gaussians 

Vanilla 
GazeGaussian

w/o Gaussian
Eye Rep.

w/o Expression-
Guided

Ground Truth

Figure 2. Additional qualitative ablation study on the ETH-XGaze dataset.
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Figure 3. Visualization of transformed two-stream Gaussians after
deformation from the canonical space.

high-fidelity image rendering. In contrast, GazeNeRF per-948
forms rotations only on the feature map level, failing to fully949
deform in 3D space, which limits its performance compared950
to our method.951

D. Implementation details952

We use the Adam optimizer [19], with a learning rate that953
follows an exponential decay schedule, starting at 1× 10−4.954
We use the VGG-based network pre-trained on ImageNet, as955
provided by the GazeNeRF [36] implementation, and fine-956
tune it on the ETH-XGaze training set for the functional957
loss LG as the pre-trained gaze estimator. Additionally, we958
utilize the ResNet50 backbone from the GazeNeRF [36]959
framework, trained on the ETH-XGaze training set, to output960
gaze and head pose for evaluation purposes. All experiments961

were conducted on an NVIDIA 4090 GPU. We first train 962
an SDF network to extract the neutral mesh and initialize 963
the two-stream Gaussian parameters in 10 epochs. The full 964
pipeline was then trained for an additional 20 epochs until 965
convergence. The loss weights follow the same configuration 966
as described in the method section of the main text. 967

E. Dataset and pre-processing details 968

Following the baseline GazeNeRF [36], all experiments are 969
conducted on four widely used datasets. 970
ETH-XGaze [59] is a large-scale gaze estimation dataset 971
featuring high-resolution images across a wide range of 972
head poses and gaze directions. Captured with a multi-view 973
camera setup under varying lighting conditions, it includes 974
756,000 frames from 80 subjects for training. Each frame 975
contains images from 18 different camera perspectives. Ad- 976
ditionally, a person-specific test set includes 15 subjects, 977
each with 200 images provided with ground-truth gaze data. 978
ColumbiaGaze [39] contains 5,880 high-resolution images 979
from 56 subjects. For each subject, images were taken in 980
five distinct head poses, with each pose covering 21 preset 981
gaze directions, allowing for detailed gaze estimation in con- 982
trolled conditions. 983
MPIIFaceGaze [56, 57] is tailored for appearance-based 984
gaze prediction. MPIIFaceGaze offers 3,000 face images for 985
each of 15 subjects, paired with two-dimensional gaze labels 986
to facilitate gaze estimation research. 987
GazeCapture [21] is a large-scale dataset collected through 988
crowd-sourcing, featuring images captured across different 989
poses and lighting conditions. For cross-dataset comparison, 990
we use only the test portion, which includes data from 150 991
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Figure 4. Cross-dataset comparison: Visualization of generated images from the MPIIFaceGaze using our GazeGaussian, GazeNeRF, and
Gaussian Head Avatar.
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Figure 5. Cross-dataset comparison: Visualization of generated images from the ColumbiaGaze using our GazeGaussian, GazeNeRF, and
Gaussian Head Avatar.

distinct subjects.992
Pre-processing. We follow the preprocessing steps in993
GazeNeRF [36] and Gaussian Head Avatar [51]. The origi-994
nal resolution of ETH-XGaze [59] images is 6K × 4K, while995
images from other datasets vary in resolution. To standardize,996

we preprocess all images using the normalization method, 997
aligning the rotation and translation between the camera and 998
face coordinate systems. The normalized distance from the 999
camera to the face center is fixed at 680mm. To extract 1000
3DMM parameters and generate masks for the eyes and face- 1001
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Figure 6. Cross-dataset comparison: Visualization of generated images from the GazeCapture using our GazeGaussian, GazeNeRF, and
Gaussian Head Avatar.

Face latent code interpolation
Figure 7. Face morphing results on the ETH-XGaze dataset.

only regions, we utilize the face parsing model from [64].1002
GazeGaussian is trained on a single NVIDIA 4090 GPU1003
for 20 epochs on the train set from ETH-XGaze. During1004
inference, GazeGaussian fine-tunes on a single input image,1005

taking approximately 30 seconds for fine-tuning and 0.2 1006
seconds per image for generation. 1007
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F. Ethical consideration and limitations1008

Our method enables the generation of highly realistic portrait1009
videos, which, if misused, could contribute to the spread of1010
misinformation, manipulate public opinion, and undermine1011
trust in media sources, with significant societal consequences.1012
Therefore, it is essential to develop reliable methods to dif-1013
ferentiate between authentic and fabricated content. We1014
strongly condemn the unauthorized or malicious use of this1015
technology and emphasize the importance of considering1016
ethical implications in its deployment.1017

GazeGaussianTarget Image GazeGaussianTarget Image
Figure 8. Example of a failure case.

While GazeGaussian represents a significant advance-1018
ment in gaze redirection quality, there is still one unresolved1019
issue. Due to limitations in facial tracking models such as1020
FLAME, it remains challenging to accurately model acces-1021
sories such as glasses, earrings, and even hair details as1022
shown in Fig. 8. An existing method [26] has attempted1023
to use cylindrical Gaussian representations to capture the1024
movement of long hair. To further enhance the diversity of1025
character generation, improving the 3DGS facial representa-1026
tion will be a key focus of our future work.1027
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